Training data and tools for processing user-generated content in Slovene, Croatian and Serbian

Tomaž Erjavec1, Nikola Ljubešić1, Darja Fišer2,1

1Department of Knowledge Technologies, Jožef Stefan Institute, Ljubljana
2Department of Translation, Faculty of Arts, University of Ljubljana

SlaviCorp 2018, Prague
September 24 – 26, 2018
Introduction

- The language of social media (tweets, forums, blogs, etc.) is collectively known as user-generated content (UGC).
- In the last decade UGC has become a very studied and influential text type:
 - quantity, accessibility
 - knowledge and opinion
 - fake news, hate speech
- UGC often significantly differs from standard language:
 Ali nisi bila včeraj na Bledu? vs. *A nis bla včer na Bledu?*
- Common differences:
 - non-standard word spellings: *ne malo* (*nemalo*)
 - phonetic orthography: *jest, jst, js, ...* (*jaz*)
 - colloquial expressions: *oreng, orng* (*zego*)
 - omissions of diacritics: *krizisce* (*križišče*)
Introduction

- Severe impact on automated text processing
 Gimpel et al. (2011): 97% PoS tagging accuracy on WSJ, but only 85% on a Twitter dataset, 5x increase in the error rate

- *Ali nisi bila včeraj na Bledu?* vs. *A* *nis* *bla* *včer* *na Bledu?*

- Two ways of overcoming this problem:
 - standardize the words in UGC, then use tools trained on standard language for further annotation;
 - train the tools with additional, UGC domain data, i.e. perform domain adaptation.
The topic of the talk

- Manually annotated datasets and tools that can be used to improve *automatic annotation of UGC text* for three South Slavic languages:
 - Slovene
 - Croatian
 - Serbian
- The datasets and tools cover six types of annotation:
 - tokenisation & sentence splitting,
 - word normalization,
 - morphosyntactic annotation & lemmatisation,
 - named entity recognition.
Annotation proceeded in a similar fashion for the 3 languages
The Slovene datasets were produced first in the Janes project

Workflow

1. Annotation guidelines written
2. Student annotators trained on preliminary test data
3. Sampled data from the Janes corpus & imported to WebAnno
4. Files distributed to annotators; each file to 2 annotators
5. Disagreements checked by the curator
6. Output WebAnno files merged with their source TEI

Annotation guidelines translated to English & annotation campaigns similar to Slovene performed for Croatian and Serbian
This saved time and effort & produced harmonized resources
Slovene Datasets

Janes-Norm
- 150,000 words of Slovene UGC
- Manually corrected tokenisation, sentence segmentation and normalization of the words to standard Slovene
- Automatically assigned morphosyntactic descriptions (MSDs) and lemmas (on the basis of the standardized words)
- Technically, a difficult aspect is when one non-standard word is mapped to several standardised ones or vice versa.

Janes-Tag
- 55,000 words, a subset of Janes-Norm
- Manually corrected MSDs and lemmas
- V2 annotated also with named entities
Croatian and Serbian Datasets

- Croatian: ReLDI-NormTagNER-hr, 80,000 words
- Serbian: ReLDI-NormTagNER-sr, 80,000 words
- Manually annotated for all six annotation layers, same as Janes-Tag

All the datasets are available under CC licenses for download from the CLARIN.SI repository, as well as for exploration and analysis via its on-line concordancers KonText and noSketch Engine.
We have also produced state-of-the-art annotation tools to enable non-standard language processing for the three languages and the six levels of annotation:

- ReLDI tokeniser: tokenisation and sentence splitting
- CSMTiser: word normalisation
- JANES-tagger: MSD tagging and lemmatisation
- JANES-NER: named entity recognition

The tools are available from https://github.com/clarinsi.
ReLDI tokeniser

- Tokeniser and sentence segmenter, Python
- Manually specified rules & language-specific resources files, such as lists of abbreviations
- Two modes: standard language, non-standard language
- For non-standard language rules are less strict & there are a few additional rules describing phenomena typical for on-line communication, such as emoticons
- Evaluation on highly non-standard tweets: tokenisation 99.2%; sentence segmentation 86.3%
CSMTiser

- Performs word normalization
- Uses character-level statistical machine translation (Moses)
- Trained on:
 - Slovenian: Janes-Norm,
 - Croatian: ReLDI-NormTagNER-hr,
 - Serbian: ReLDI-NormTagNER-sr
- For Slovene non-standard Twitter data:
 character-level accuracy = 98.5%, (non-normalized = 94.8%)
JANES-tagger

- Performs morphosyntactic tagging and lemmatisation
- Based on Conditional Random Fields
- Trained on standard-language datasets for three languages supplemented with Janes-Tag, ReLDI-NormTagNER-hr, and ReLDI-NormTagNER-sr
- Token-level accuracy on Slovene Twitter:
 - standard tagger = 69%
 - adapted tagger = 86%
 - (on standard data = 94%)
JANES-NER

- Performs Named Entity Recognition
- Based on Conditional Random Fields
- Trained on the same three datasets as the JANES-tagger
- F1 of JANES-NER:
 - overall: 0.69
 - person: 0.92
 - location: 0.80
 - organisation: 0.56
 - other class: 0.30
Conclusions

- Presented manually annotated datasets and tools for normalisation, morphosyntactic tagging, lemmatisation and named entity recognition of non-standard Slovene, Croatian, and Serbian.
- All datasets & tools freely available

Further work:
- Making the tools better: from CRF and SMT to neural networks
Training data and tools for processing user-generated content in Slovene, Croatian and Serbian

Tomaž Erjavec¹, Nikola Ljubešić¹, Darja Fišer²,¹

¹Department of Knowledge Technologies, Jožef Stefan Institute, Ljubljana
²Department of Translation, Faculty of Arts, University of Ljubljana

SlaviCorp 2018, Prague
September 24 – 26, 2018